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ON INTEGRALLY DEPENDENT INTEGRAL DOMAINS
By P. M. GRUNDY
(Communicated by W. V. D. Hodge, F.R.S.—Received 25 April 1946)
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INTRODUCTION

The subject of this paper is the simultaneous ideal theory of a pair of integral domains R
and G 2R, of which R is integrally closed, and & integrally dependent on R. It is assumed
that the quotient field L of S is a finite separable extension of the quotient field K of R. The
device of quotient rings effects a preliminary simplification in many of the proofs; the
quotient rings Ry and Sy, with respect to any existent multiplicatively closed set S of non-
zero elements of R, also satisfy the above basic postulates for R and S. Another method of
preliminary simplification, valuable in the discussion of ramification theory, is the ad-
junction of Kronecker indeterminates. Such indeterminates (algebraically independent
over K) are denoted by y or z; in connexion with the regular representation of L, they are
regarded as adjoined to K. This method is expedited by the known fact that R[y,, ...,,.]
and S[y,, ..., ¥,,] also satisfy the above postulates for R and S. In particular, R[y,, ...,,,]
is integrally closed, and the degree of L(y,, ..., y,,) over K(yy, ...,y,,) is equal to the degree of
L over K. Integral domains satisfying the conditions imposed on R and & are of common
occurrence in algebraic geometry; the resulting interplay of geometrical and ideal-theoretic
ideas makes such cases of outstanding interest.

The main results of this paper are given in Part I. The investigation is modelled on the
well-known theory of the ‘classical” case when R is an integrally closed domain in which
the (maximal and) weak minimal conditions for ideals hold. The simpler theory of the
discriminant- and different-ideals, complementary modules, and norms, is assembled in
§§ 1 to 3. Problems involving the structure of the extended ideal p& of a prime ideal p of R—
ramification theory—are introduced in § 4, where certain fundamental theorems of Krull
are stated. The rest of Part I is concerned with ramification theory. The theorems of §§ 6
and 7 are valid for strongly convergent prime ideals, a new concept defined in §5; these
theorems are generalizations of those clustering round the classical Different-Theorem. If
the maximal condition (Hilbert basis condition) holds in R, every prime ideal of R is
strongly convergent. The theorems of § 6 hold, more generally, for convergent prime ideals.
The class of convergent prime ideals also includes the maximal ideal of any rank 1 valuation
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296 P. M. GRUNDY ON INTEGRALLY DEPENDENT INTEGRAL DOMAINS

ring. Part II is essentially an appendix; the results given briefly in §§8 and 9 are often
needed in Part I. The counter-examples in § 10 have some bearing on the theory of conver-
gent prime ideals.

For the purposes of this paper, an integral domain (besides being a commutative ring
without null-factors) is required to have unity distinct from zero. The null ideal, but not
the unit ideal, is included amongst the prime ideals of an integral domain. The quotient
process is used in the following form: if m is an R-submodule of L, and n any subset of L,
m : n is the set of all ze L such that ant <m. Ideals, unless othérwise specified, are fractional
idealst. ‘Integrally closed’ is used in the sense adopted by Krull.f A monic polynomial in
x is one with leading coefficient unity, as in Albert (1937). It should be observed that S,
denotes the quotient ring of & with respect to the system of elements of ‘R nof in p, and that
the isolated component of an integral S-ideal with respect to the same system is denoted
similarly. A polynomial over R (i.e. with coefficients in ) is congruent to zero modulo
an R-ideal if all its coeflicients belong to that ideal. Any other questions of terminology
~ can be settled by reference to my paper (Grundy 1942).

Conventions. The following notation is used throughout Part I: R denotes an integrally
closed domain with quotient field K, L a separable extension-field of K of finite degree #,
and & 2R an integral domain integrally dependent on R, with quotient field L. The letter
p stands for a prime ideal of R. All further restrictions are stated in the enunciation of the
results concerned. The symbols D, 9, ¢, ¢( ), and * have a fixed significance defined in § 1.
A supplementary list of conventions governing the notation will be found in § 4.

PART I
1. FUNDAMENTAL CONSTRUCTIONS

The ideas introduced in this section are closely connected with the regular representation
of L. As far as (1.8) the results are standard in the classical theory, and their generalization
calls for scarcely any alteration of the proofs.§ Theorems 1 and 2, on the other hand, deal
with a problem which is not in doubt in the classical case.

It is familiar that the characteristic coefficients of any element a of S are elements of R.
The norm N(a), trace 7'(«), and discriminant D(a) belong to R, and the different d(a) to
&. (This notation is similar to that in §9. We reserve x for the dummy variable appearing
in characteristic and minimal polynomials.) Since ¢ is a root of its characteristic polynomial

t An R-submodule a of K is an R-ideal if R:a = (0), and an integral R-ideal if a = R. The class of R-ideals
is closed under the four operations +, ., : and n.

+ The words ‘ganz abgeschlossen’, where they appear in van der Waerden (1931), must accordingly be
translated as ‘totally closed’. The distinction between integrally closed and totally closed domains was
emphasized by Krull (1932). Every totally closed domain is integrally closed, but the converse is false. An
integrally closed domain in which the maximal condition holds is totally closed. Cf. also Lorenzen (1939).

§ See, for example, Fricke (1928); on the conductor, Grell (19274, 1927b). A concise account of the
classical theory from a modern point of view is given by Krull (19395).

Schmeidler (1928) has generalized parts of the Dedekind-Weber theory of algebraic functions of one
variable to functions of m —1 variables y,, ..., y,, over a perfect (vollkommen) field P. He does not, how-
ever, work directly with y,, ..., ,,, but with new variables x,, ..., x,, obtained by a linear transformation with
indeterminate coefficients. Under these conditions, his paper includes (1.6), the expression (d(a))~'R[«]
for the module complementary to R[a], and the inequalities be S S, Dec &S.
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Sf(x), N(e)e aS; so a is a unit of S if and only if N(a) is a unit of R. By expressing the fact
that the discriminant of the polynomial (x—a)~!f(x) belongs to &, we obtain the relation
D(a)e (d(«))?S. Still assuming that « € G, it is a well-known consequence of Theorem 17 that
(L.1) d(a) S = R[a]; afortiori D(x) S = R[«]. These relations still hold when & is replaced
by its integral closure in L.
Letw,, ..., 0, be a basis for L over K, and 6,, ..., 0, the complementary basis, the elements
w; being in &. It follows from (9.2) and (9.1) successively that

(1.2) 0,D(wy, ...,0,) e R. (0, ...,0,),

(1.3) - D(w,...,0,) SSR. (v, ...,0,).
Again, putting ¢; = T'(w,0;), D = | ¢; |,and denoting the elements of the (symmetric) inverse
matrix by £, then

0,6, —E; = ﬁiﬁj-EijSZwsﬁs from (9.4)
- SE03B,0,~F,3E00,
L= tz{E'itEsj_EijEst} W, W,

‘By determinantal theory, ;D and {E,E; —E;E} D belong to R. Hence
(1.4) 0,0;D(wy,...,0,)€S (1,5 =1,...,n).

“Complementary modules. The complementary module m* of an R-submodule m of L is
defined to be the set of all # € L such thatt T(fm) =R. Itis clear that m** 2m, and hence
that m*** =m*, because m* 2 (m**)* = (m*)** 2m*. If 0,...,0, and 6,,...,0, are
complementary bases of L, the modules R.(v,,...,0,) and R.(f,,...,0,) are mutually
complementary. When m does not possess a basis of this form, even locally, m** may be
distinct from m (see further (3.6)). Given any a e &, primitive for L over K, §9 shows that
the basis complementary to 1,a, ...,a""! is 7,/d(a), ..., 7,-,/d(@) ; here the 7,_, are defined
by the identity f(x) = (x—a) (7,+ ... +7,-1%""!), where f(x) is the characteristic polynomial
of . Itis clear that R.(5,,...,7,-1) = R.(L,a,...,a""1), and follows that the modules

Rlz] and (d(e)) R[]
are mutually complementary.
Definitions. The discriminant-ideal © of S over R is the R-ideal generated by all discriminants
D(ay, ... a,) (ay5...s0,€ S). The different-ideal] d of S over R is the S-ideal generated by
the differents d(a), for all ae S. The letter e stands for the module complementary to S.

t For any R-submodule M of L, T(M) denotes the set of all T(y) (y € M). Clearly T (M) is an R-sub-
module of K.

+ Previous work involving the different-ideal seems to have been carried out under strong finiteness-
conditions. The different-ideal does, however, appear implicitly in Zariski’s work (1939, 1940), where R is
a polynomial ring; it also occurs in a special case in Schmeidler (1928).

In the classical theory, the different-ideal is defined to be S:¢; but the only property of S:e required for
the classical ramification theorem is that, in the cases considered, it coincides with our d. Further support
for our definition is gained from Theorem 13, where the significance of b is made plain. The ramification
theorem of Grell (1936), on the other hand, seems to favour the classical definition. If it should turn out that
both b and S:¢ have to be retained in the general theory, it may be best to reserve the classical term ‘rami-
fication ideal’ for the latter. The connexion between d and ¢ is examined in § 2.

372
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Evidently ¢ contains &, and admits multiplication by &, while it follows from Theorem 17
that d(a) e = R[«], for any ae S. Thus ¢ is an S-ideal such that e2 S, dbe = S. Another
property of ¢, expressed by the relation De?< S, follows readily from (1.4). If a is any
non-null S-ideal, the condition for fe a* is 7(faS) =R, i.e. fa<e; hence

(1.5) a* =e¢:q.

The conductor ¢(«) of an element a € S (with respect to &) is defined to be the conductor of
R[] with respect to S, viz. R[] : S. For any a e S,

(1.6) c(a0) = d(a)e.

This equation certainly holds when d(a) = 0; for then K(«) is a proper subfield of L, so
that ¢(¢) = (0). When d(a) 4-0, the condition for y to belong to (d(«)) ! ¢(«) is, in the notation
of Theorem 17, that T(yy,_,S) <R (i=1,...,n). Since 7,_,€ S, and 5,_, = 1, these in-
equalities hold if and only if yee.

Quotient rings. In proofs involving the quotient rings Ry and Sy = R,. S (where S is an
existent multiplicatively closed set of non-zero elements of R), it is necessary to know what
are the discriminant-ideal, etc., of S with respect to Rg. The results are straightforward:

(1.7) The discriminant-ideal of Sg over Ry is D.R, and the different-ideal is d. Sg.
If S has a finite R-basis, the complementary ideal of Sg over R is e. Sg.

(1.8) If n is any finite R-submodule of L, and n* is the complementary module, the
complementary module of 1. R over R is n* . R;.

Proof. The discriminant-ideal of G over R obviously contains DR. Since the elements
of S are those of the form u~'a (x € S, a € S), the reverse inequality follows from the equation
D(uilay, ...,u'e,) = (uy...u,) 2 D(ay, ...,a,), wherein u, ...u, is a unit of R;. A similar
argument disposes of the different-ideal. The rest of (1.7) is included in (1.8), which asserts
that the relation fen*R, is necessary and sufficient for T(fnR) =R, The sufficiency
follows from the simplest properties of the trace. Conversely, suppose that T(fn) < R;.

Because 1 has a finite R-basis, there exists « €S such that #T(fn) = R, whence uf e n*.
THEOREM 1. A4 necessary and sufficient condition for S, to possess an R,-basis of n terms is
that DR, be a principal ideal of R,,.

The necessity is trivial, from (1.7) and the transformation law for discriminants, When
DR, is a principal ideal of R, there exist, by (8.8), elements vy, ..., w, of G such that

DR, = D(vy, ...,0,) . R,.
A device borrowed from the classical theory completes the proof. Any element ae S, is

expressible as a = a,0,+...+a,0, with ¢;€ K; and here, by the transformation law for

discriminants,

LZZZD(O)I, ooy wn) = .D(Cdl, reey a)i_l’ OC, a)l'_{_l’ ceey (l)n)e bmp-

Thus a? € R, a,¢ R, and consequently o, ..., 0, is an R,-basis for S,.

CoroLLARY (using (8.6) and (8.7)). Suppose D has a finite R-basis. Then D s inversive if and
only if, for every p, S, has an n-term R-basis.
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THEOREM 2. Let p be a maximal ideal (of R).
(1) If S, possesses an n-term R,-basis, the algebra S[pS over the field R[p has rank n.

(2) Assume that S has a finite R-basis. If elements o, ..., a,, of S form an R[p-basis for S[pS,
then ay, ..., a,, form an R,-basis for S,,. The rank of S[pS over R/p is therefore at least n.

(1) When &, possesses an n-term R,-basis, the basis elements v, ...,», may be taken
in &. Thus every fe S satisfies an equation

up =byo,+...+b,0, (b;eR, ueR, u£0 (p)).
Taking v € R such that vu=1 mod p, it is seen that
| p=o(bioy+ ..+ by0,) (),

and it follows that wy,...,0, form an R/p-basis for S/pS. Now pS, = pR,. (0}, ...,0,).
Coupled with the linear independence of w,, ...,w, over K, this shows that the congruence

a0+ ...+ a,0,=0 (pS) * (g, R)

can only hold if the g; all belong to pR,~n R = p.

(2) By hypothesis, S has a finite R-basis, and S =pS+R.(ay,...,a,). Thus the R-
module M = S/R. (¢, ..., 2,,) has a finite R-basis, and M = pIR. According to Theorem 6
of Grundy (1942), p cannot contain the annihilating ideal of I ; there exists u € R such that

uS<R. (045 ..., ), uF£0 (Pp).

Hence S, = R,. (a5 e @,), and m>n.

CoroLLARY.T Let p be a maximal ideal. Assuming that S has a finite R-basis, an element e S
is primitive for the algebra S|pS over Rp if and only if ¢(a) n Rt p.

If, in fact, © = pS+R[a], the theorem shows that S, = R,[«¢]. The conductor of R, [a]
with respect to &, which by (1.6) and (1.7) is d(«).eS, = d(a) eR, = c(a) R, therefore
contains unity; so ¢(«) contains an element of R notinp. Conversely, the relation ¢(«) n R&p
implies that 1€ p+¢(a), whence S < pS+¢(2) S <pS+R[«].

Results obtained by Mubhly (1943) indicate that the general problem of finding workable
conditions sufficient for S to have an n-term R-basis is too difficult to be tackled at present.
‘The corresponding local problem}—conditions for G, to have an n-term R -basis—is
probably much simpler; but of course Theorems 1 and 2 cannot be regarded as a solution.
It would be natural to include the following among the postulates: (i) R = R, a unique
factorization domain, (ii) & = S, integrally closed. Assuming (i), it would be enough to
find conditions sufficient for D to be a v-ideal§ of R. Since Theorem 3 shows that under
certain circumstances e is a v-ideal of G, it seems that (3.13) may be relevant; a solution of
the problem might well come through some improvement in norm theory.

+ When R is a polynomial ring, this is Theorem 9 of Zariski (1939).

I Itis well known that &, does not always possess an n-term Ry-basis. An example is obtained by taking
R =1fy4, 2] and S = [y, y3z, y2z5, z*], where y and z are indeterminates over a field f of characteristic zero.
In this case D =y'22!%(y%, 2*)? is not inversive. Another example is given by R =¥y’ y2z, yz2, 23] and
S =1[y}, y'z, 2%]. Here @ is integrally closed, but D = (43, y?z, yz?) is again not inversive.

§ Cf. footnote T, p. 300. '
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2. ON THE COMPLEMENTARY IDEAL

When R is a Z.P.I. ringt and & is integrally closed, the ideals d and ¢ defined in §1
satisfy the equation e = S, subject to certain safeguards. That is the content of Lemma 1,
a classical theorem, although the proof below is not entirely orthodox. It is also known that
the method of prime ideal quotient rings} enables the bulk of the classical theory to be
generalized to the case when R is a »-Z.P.I. ring. In that case (with safeguards, etc.) one
would expect to find the product de ‘v-equivalent’ to S, i.e. S:de = S. This is true under
the conditions of Theorem 3, and follows at once from the latter; but, under such conditions,
the theorem shows further that e is a v-ideal.§

Lemma 1. Assume that S is integrally closed, R a Z.P.I. ring, and that the field S|q is separable
over R/ (qn R), for every non-null prime ideal q of S. Then de = &.

Disregard the trivial case when R has a finite number of elements, and so is a field. In
view of (1.6) and the remark in §1 that be =, it will be enough to prove the following:
Given any non-null prime ideal q of S, there exists an a € S such that ¢(a) £q.

Let gn R = p,pS = ¢°h, where s>1, and the integral S-ideal ) is not divisible by g.
Because the only G-ideals between & and g° are powers of q, Theorem 20 supplies an
element « € S primitive for G/q° over R/p, which may be chosen so that «#0 mod q. Any
element congruent to « mod ¢° shares these properties. It can therefore be arranged that
a=0mod}, and further that « be a primitive element for L over K. Hence S = R[a] +¢°
and agq* <pGS, so that «& < R[a] +pS. By a trivial induction 'S = R[a] +p"S for all r>1.
Taking c(a) n R = p'a (where :>0,a =R, asp), it follows that

a*1a. S < R[] +ap1G = R[e] + (@) S = R[al.

Thus ot*1a = ¢(«), whence ¢(a) £q.

THEOREM 3. Assume that G is integrally closed, R a v-Z.P.I. ring, and that the quotient field of
S/q is separable over that of R(qn R), for every minimal prime ideal q of S. Then ¢ = S:D.

For any minimal prime ideal p of R, R, is a Z.P.I. ring, and the same is therefore true of
S,. (In fact, both are principal ideal rings.) By the theory of quotient rings (Grell (1927a);
also in § 13 of Grundy (1942)), every non-null prime ideal of S, has the form q&,, where q
is a minimal prime ideal of G such that qn R = p. Itis also a standard result, formulated
more exactly in (4.4), that the structure of the quotient fields of R/p and &/q is the same as
that of the fields R,/pR, and &,/qS,. Thus R, and S, satisfy the conditions of Lemma 1.

Since always de = S, it is only necessary to prove that S:b ce; consider any fe S:D.
For every minimal prime ideal p of R, #.9S, = S,. By (1.7) and Lemma 1, /f belongs to the

+ A Z.P.1. ring is an integrally closed domain in which the (maximal and) weak minimal conditions hold—
cf. Krull (19395).

A v-ideal of an integral domain p is an p-ideal a such that 0:(p:a) =a. On z-ideals and »-Z.P.I. rings,
see Krull (19394, 1935), and chapter x1v of van der Waerden (1931). Any v-Z.P.I. ring is totally closed, and
is the intersection of its quotient rings with respect to its minimal prime ideals; and every such quotient ring
isa Z.P.I. ring. If R is a v-Z.P.I. ring, and & integrally closed, then G is a v-Z.P.I. ring (Krull 19395, n. 17).

+ In the original work of Kronecker, Kénig, and others, such results were obtained by the device of
‘functionals’. Cf. n. 35 of Krull (1935). ‘

§ On the other hand, b is not necessarily a v-ideal. For an example, take R ={[y? 2z*] and S =1[y, z],
where y and z are indeterminates over a field f of characteristic zero. In this case b = S.yz(y, ).
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complementary ideal of &, over R,; T(ﬁep);s R,, and a fortiori T(fS)<R,. Since
R = NR,, where p runs through all minimal prime ideals of R, it follows that

T(pS) =R, fee.

CoROLLARY. Under the conditions of the theorem, ¢(a) is a v-ideal of S, for any ae .
A special case of Theorem 3, stated in a form equivalent to the Corollary, was proved by
Schmeidler (1928). Some remarks on his paper will be found in footnote §, p. 296.

3. NORM THEORY

The norm process adopted in this paper differs from that of Fitting (1937), the most
obvious difference being that here the determinants are exclusively of order n. The choice
between the various definitions is a question which cannot yet be regarded as settled. The
present definition can at least claim serious consideration, on the grounds that it agrees
with the ‘classical’ definition, and that most of the standard theorems of classical norm
theory are special cases of the results of this section.t Moreover, these results are closely
connected with the problem mentioned at the end of §1; it is hoped that they will help to
suggest a method for its solution.

In order to avoid trivial exceptional cases, attention is restricted to modules of a class H,
defined as follows: The class H shall consist of all R-submodules m of L such that both S :m=(0)
andm:S=(0). Itis clear that every non-null S-ideal belongs to H, and hence, using (1.3),
that necessary and sufficient conditions for m to belong to H are: (i) mcR.(ay,...,,),
with some «,, ...,,€ L, and (ii) m contains z linearly independent elements. The product
of a finite number of members of H belongs to H; in fact, H is closed under the four operations
+,+ % and n. The module complementary to a member of H also belongs to H. When
the maximal condition holds in R, every member of H has a finite R-basis. ‘

Clarendon type Greek letters are used to stand for ordered sets of n elements of L; thus
a stands for the set «;, ...,«,. Ifw is a K-basis of L, there exist unique elements 4;;€ K such
that @; = 3 a;0;. The determinant |a; | is denoted by N(a;w). Several properties of this

7

symbol follow at once from linear aigebra and the elements of the theory of the regular
representation of L: ‘

(3.1) N(fa;lw) = N(ECT) N(a;e). IFR. (a) =R (w), then
N(a;w)eR and ‘w.N(a;w)<R.(a).
(3.2) For any bases w and 6 of L over K,
N(a300) N(B38) = Na30) N(B30).

 An important exception is the classical theorem expressing N(1t; 1), where m<, as the product of the
annihilating ideals of the composition factors of 1/m. On norm theory in the classical case when R is a
Z.P.I. ring, see Grell (19275, 1936), and cf. Fitting (1937).

In multiplicative ideal theory, if one is working with a Priifer ideal-system of R-ideals obeying the ‘semi-
group condition’ of Lorenzen (1939), another construction is available.—The norm N(b) of a finite S-ideal
b=G&.(f, ..., B, may be defined to be the ideal generated by the coefficients of the distinct power-products
in N(f,y,+ ... +pB,y,), where y,, ..., y, are indeterminates.
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(3.3) Ifa and a* are complementary bases, likewise @ and @*, then
N(a;B) = N(@*;a*), N(a;a*) =D(a), {N(a;p*)}*=D(a)D(B).

Definition. For any modules m, n of the class H, the norm of m with respect to n (over R),
N(m;n), is the R-module generated by the elements N(a;B), for all a,B satisfying

m2R.(a), n=R.(B).

It is an immediate consequence of (3.1) that N(m;mn) is a non-null R-ideal. Further, from
(3.1) and (3.2),

(3.4) If m=n (both members of H), then N(m;n) <R, nN(m;n) cm.
(3.5)1 Ifmy,...,mue H,

N(my3my) N(mgsmy) = N(myjm,) N(img;my).
A property of complementary modules is relevant at this point:

(3.6) Provided m belongs to H,m** is the intersection of all modules t which contain nt
and possess an n-term R-basis.

Any such 1t contains m**, because n** = n. The fact that N n =m** is seen by remarking
thatm* (which also belongs to H) is the union of modules of the form R. (w), with w linearly
independent over K. .

(3.7) For any myne H, N(im;n) = Nm;n**). If m =m**, Nim;n) = N(n*;m*).

The first assertion follows from (3.6); the second from the first and (3.3).

Local theory. For any prime ideal p of R, let N,(m;n) denote the norm of mR, with
respect to nR,, (over R,).

TuEOREM 4. If m,ne H, and if n has a ﬁmte R-basis, Ny(m;n) = R,. N(m;n). Under the

same conditions
N(m;n) = N N,(m;n),

where P runs through all maximal ideals of R. ,

Proof. 1t is clear that N(m;n) < N,(m;n), and in fact that R,. N(m;n) < N,(m;n), the
latter being an R,-ideal. On the other hand, consider any «,@ such that mR, 2R, . (a),
nR,=R,. (B). There exists ue R such that m2R. (ua), u£0 mod p; because n has a finite
R-basis, there also exists v € R such that ;m<R.(B), v20mod p. From these relations it
follows that

(uv)" N(a;B8) = N(ua;v78)e N(m;n).
This shows that N,(m;n) < R,. N(m;n), and completes the proof that
Ny(m;n) =R,. N(m;n).
The intersection formula follows from (8.1).

(3.8) Suppose that m,n e H, and that n has a finite R-basis. If N(m;n) is an inversive
R-ideal, then mR, and n*R,, have R,-bases of n terms, for every prime ideal p of R.

t The special case N(my; m,) N(mty; my) = N ; my) N (mz, nt,) is an analogue of the classical formula
N(a;; a;) N(ay; a3) = N(a;; ag). See also (3.9).
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Proof. Assume for the moment that R = R,. According to (8.6) and (8.8), there exist
a and B satisfying the relations R. («) =m,R.(B) 21, and such that N(«;R) is a generating
element for the principal ideal N(m;n). Any y of m is expressible as

y=c0+...+c,a, (¢ K),

where cp = N(y,e9, ..., a,;)
= Ny, a9 ..., 2,38) N(B3a),
so that e Nm;n) NB;a) =R.

Similarly ¢,, ..., c,e R, whence mt = R. (a). It follows from this result and (3.7) that
Nn*;m*) = N(m;n);

and thence, by a repetition of the argument, that the basis complementary to @ is an R-basis
for n*. In the general case (R+R,), (3.8) follows from the preceding proof and (1.8) and

the equation
R,. N(m;n) = N,(m;n).

(3.9) Letm be a finite R-module of the class H. Then a necessary and sufficient condition

for the equation
Nm;m) =

is that mR,, have an R,-basis of n terms, for every maximal ideal p of R.
~ The necessity follows from (3.8), and the sufficiency from Theorem 4.

(3.10) Ifm,ne H, if n has a finite R-basis, and if g is an inversive R-ideal,

N(gm;n) = g"N(m; n).
Because g%, is a principal ideal (by (8.6)), and by Theorem 4,
| N,(gm;n) = g"R,. N,(m;n) = R,.g"N(m; n)

Hence N(gn;n) = NR,.g"N(m;n) = g"N(m;n).

(3.11) If a,b are non-null G-ideals, ) an inversive S-ideal, and S and b have finite
R-bases, then N(a;b) = N(ah;bh). Subject to the same conditions on a,}, and S,

N(ab; &) N(S; &) = N(a; &) N(b; ). |

The conditions imply that § has a finite R-basis, by (8.5). The first equation is another

deduction from Theorem 4: N,(a;b) = N,(ah;bh), because hR, is a principal idealt of

S,. The second equation follows from the first, using (3.5).
Connexion with D. An inspection of (3.3) shows that in every case

N(S;e)2 :D
If S (and therefore ¢) has an n-term R-basis, the sign of equality will hold. This last remark
can be extended, in the usual way, by means of Theorem 4; using (1.7), we deduce

(8.12) Suppose that S and e have finite R-bases, and that &, has an n-term R,-basis,
for every maximal ideal p of R. Then N(S;e) = D.

T DR, =HS,, is a principal ideal of S, by (8.6)—the maximal ideals of S, which are those lylng over
PRy, are finite in number, as noted in § 4.

Vor. 240. A. 38
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(3.13) Iff e* = S, N(S;e) is integrally dependent on D.

Progf. Consider any a and @* such that R. (a) =S, R. (B*) 2 ¢; denote the basis comple-
mentary to B* by B. As noted in (3.3), {N(a;B*)}> = D(a) D(B). Because ¢* = G, B is
contained in &. Thus N(G;e), being generated by certain elements whose squares belong
to D?, is integrally dependent on D.

4. GENERAL RAMIFICATION THEORY

As a preliminary to the main topics of this and the following sections, the existence and
properties of the prime ideals of S which lie over a given prime ideal of R must first be
considered. A prime S-ideal q is said to lie over p if gn R = p.

Because G is integrally dependent on R, S/q is integrally dependent on (R+q)/q, for
any prime ideal q of G. The degree and reduced degree of the quotient field of S/q (the
residue field of q) over that of (R+q)/q are called the degree and reduced degree of q over R.
By a well-known identification principle,{ (R-q)/q may be identified with R/p, where
p = qn R. Thus one may speak of the degree, separability, etc., of the residue field of q
over that of p. When p is maximal, any polynomial over R is congruent modptoa product
of polynomials irreducible mod p, and this factorlzatlon mod p is unique mod p.

(4.1) Suppose that p is maximal, and that q is a prime G-ideal lying over p. Let ¢ be any
element of S[yy, ..., ¥,,], where y,, ..., y,, are indeterminates. Then there exists a polynomial
(%591, ..., 4,,) over R, monic in x, such that
' (i) g(%;4y5-+-»4,,) is irreducible mod p;
(ii) g(0;915 - Ym) =0 (a);

(iii) every polynomial A(x;yy, ...,¥,) over R, such that 4(6;y,, ...,y,) =0 (q), is divisible
mod p by g(x; Y1, -, Ym)-

In fact, let & be the image of ¢ in L[y, ...,¥,], where & = S/q,f = R/p. The minimal
polynomial g(x) of § over ¥(y,, ..., ¥,,) has its coefficients in [y, ..., ,,], because the latter is
integrally closed. Take g(x;y,, ...,¥,) to be a polynomial over R monic in x, whose image
mod p is g(x;4y, .--» ¥,,) = &(%x). The proof is completed by applications of Gauss’s Lemma.

The polynomial g(x) of (4.1), whose non-leading coefficients naturally are only unique
mod p, is known as the minimal polynomial of 6 mod q.

(4.2) The prime S-ideals lying over p correspond 1-1 with the prime &,-ideals lying
over pR,, the correspondence being that between contracted and extended ideals.
The assertion follows from the theory of uotient rings (e.g. from Grundy 1942, §13).

(4.3) Suppose q is a prime G-ideal lying over p. Then the quotient ring of S, with respect
to S, is S,. In the 1-1 correspondence (of extended and contracted ideals) between all
integral &,-ideals and those integral G-ideals a such that a, = a, (i) ¢S,-primary ideals
of G, correspond to g-primary ideals of &; (ii) the isolated component of p&S, with respect
to q&,, corresponds to (pS),. '

t ILe. if e:e =@&. This will certainly be the case if & is totally closed. On integral dependence of ideals,

and totally closed domains, cf. Lorenzen (1939).
1 Krull (1935, p. 3). Corresponding elements in the natural isomorphism between (R +q)/q and R/(qnR)
are identified.
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For proof, every element of the quotient ring §) of S, with respect to &, is expressible as
aa 1 (fb~1)"1, witha, fe S;a,be R;a,b£0mod p; f#£0mod q. Sinceaa '(fb~1)"! = ab(af)1,
it is clear that ) = S,. The reverse inequality, $ 2 S, follows from the fact that

(,q@p) nGS = q.

Of the remarks about the 1-1 correspondence, (i) follows from quotient-ring theory (e.g.
from Grundy 1942, §13). Finally, the result just proved for § shows that the isolated com-
ponent of pGP with respect to qep is (qu) n S,; and to justify (ii) it is only necessary to
add that (peq) N Spn S = (peq) nGS = (p@)q

(4.4) Suppose q is a prime S-ideal lying over p, the residue field of p being embedded
in that of q according to the identification principle. Then another application of the
identification principle sends these fields into the residue fields of pR, and q&, respectively.

Like (4.1)—(4.3), this is a known result often encountered without formal statement or
proof. The identification principle requires us to start by identifying R/p with the subring
(R+q)/q of S/q. These integral domains may in turn be simultaneously identifiedt with
R = (R+qS,)/aS, and § = (&+qS,)/qS,. The residue fields of pR, and qS,, are identi-
fied with the quotient fields of T = (R, 4-qS,)/qS, and £ = &,/qS, respectively. Clearly
R<¥,85< 8. That f is contained in the quotient field of R follows from the definition of R,
and because any element of R not in p is not in &, ; similarly £ is contained in the quotient
field of S. (Actually, both f and £ are fields.)

THaEOREM 5. Given any prime ideal p of R, there exists a prime ideal q of S lying over p.

This is one of a series of existence-theorems proved by Krull (1937). The theorems in
question hold under conditions more general than those postulated throughout Part I of
this paper—as a matter of fact, that is true of almost all the results of this section. The proof
of Theorem 5 reduces essentially to the remarks that unity cannot be integrally dependent
on the prime ideal pR,; so Theorem 14 supplies a prime ideal of S, which contains p&,,
and consequently lies over pR,. In the paper of Krull (1937), again, (4.5)~(4.7) are deduced
rapidly from the form of Theorem 5 proved there—
~ (4.5) A prime S-ideal q is maximal if and only if p (= g R) is maximal.

(4.6) If q lies over p, S, is a minimal prime over-ideal of p&S,. As q, runs through the
distinct prime G-ideals lying over p, q, S, runs through all the distinct maximal ideals of S,,.

(4.7) 1f q, and q, are distinct prime S-ideals lying over the same prime ideal of R, q, £ q5.

For the discussion of ramification theory proper, some further deductions from Theorem 5
are needed. (4.8) and (4.9) are similar to results already used by Krull (19394). First,
combining (8.1), (4.6), and (4.3), it is seen that bS, = NbS, for any S-ideal b, whence
b, = Nb, provided b< . It follows that

(4.8) As q, runs through the distinct prime S-ideals lying over p,

S, =N, (quotient rings),
(a8), =N (aS), (isolated components in &),

+ The identifications are correct because by the modular axiom

R+q) nqSp=(RnqSy) ta=p+qg=aq,
and because G n qS, =q.
38-2
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where a is any integral ideal of R. If p is a minimal prime over-ideal of q, the isolated
components (aS), are respectively q,-primary ((4.7) and Theorem 15).

When p is a maximal ideal, and a is p-primary, every element of R not in p has in R an
inverse mod a. Itis easy to deduce that (¢&), = a&; hence a refinement of (4.8) is obtained:

(4.9) Ifpis maximal, and q is p-primary, then
aS =N (a®), ,

with the g, as in (4.8). In particular, @ may be any power of p, by (8.4).

(4.10) Let y,,...,y,, be indeterminates. An element 4 of G[y,,...,¥,] is congruent to
zero mod N q, if and only if, in the minimal equation A*+a, 4% 14 ... 4-a, = 0 of 4 over
K(y,,...,y,), the coeflicients g; are all congruent to zero mod p.

Proof.T The condition stated is obviously sufficient for 4 to be congruent to zero mod N q,.
In the proof of its necessity, let the coeflicients of the distinct power-products in 4 be
ay,...,. Let M; be the smallest normal extension-field of K containing a,...,%; let M,
be the smallest field containing M, and L, T, the integral closure of R in M|, and T, the
integral closure of R in M,. Every prime ¥,-ideal t lying over p lies over one of the g, and
consequently contains a,, ...,, By Theorem 5, every prime T,-ideal s lying over p is the
contracted ideal of such an r. Hence «,,...,2,€ Ns; and this property is shared by the
conjugates of the o, over K, since the aggregate of all s is obviously invariant under the Galois
group of M, over K. It follows that a,, ..., a; are congruent to zero mod Rn (Ns) = p.

(4.11) The number of prime ideals of S lying over p is finite, at most 7.

The finiteness could be deduced from the Conjugates Theorem of Krull (1937), but a
direct proof of (4.11) is easy. Assume, without loss of generality, that p is maximal. If there
existed distinct g, ...,q, lying over p, one could choose y;e¢ S, making y,y,+... +¥,7,
congruent to y;modq; (y; indeterminates; ¢ = 0, ...,n); the characteristic polynomial of
YoVo+ .- +9,7, would have the n+1 mod p factors x—y,, ..., x—y,, which is impossible.

Conventions. For the rest of Part I, the prime ideals of & lying over p will be denoted by
i, -+, q,- The degree (finite or o0) of q; will be denoted by #;, and its reduced degree by
n;. The ramification rank p; of g, is defined in § 6.

(4.12) We have y(q,n...n q,)" < pS, where x is n! times the unity element of R. If the
residue field of p has characteristic zero, qf = (pS),, (1 =1, ..., ¢).
The first assertion is obtained by putting 4 = y,y,+...+y,7, in (4.10), with any

yl’ "')’}’ne (qln"'n qe))

and considering the coefficient of Yy Yy A fortiori p(q; ... q,)" = pS, so by (4.7) the second
assertion follows.

THEOREM 6 (general discriminant theorem).}
(1) n}+...+n.<n, with equality if and only if p2D.
(2) Ifp2D, then (pS),, = O;, and the residue field of q,1s separable over that of p, foralli = 1, ...,e

t Cf. Krull (19394), part (c) of the proof of the general discriminant theorem. We give the proof of
(4.10) in a form which clearly holds for any L algebraic over K, not necessarily finite or separable.

1 This comprehensive statement comprises Theorems 2, 3, and 5 of Krull (19394); but Krull does not
assume that L is separable over K.
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The proof of Theorem 6 also discloses that, when p 2D, and R/p has an infinite number
of elements, there exists « € S such that D(«)#0modp. When p3D, and p is maximal,
elements vy, ..., 0, of S form an R/p-basis for S/pS if and only if D(w,, ...,v,)50mod p.
These corollaries are equally relevant as supplements to Theorems 7 and 10.

It goes without saying that the general discriminant theorem contributes enormously
towards the solution of the central problems of ramification theory—viz. Given p, wfzat can
be said about (a) the isolated primary components (pS),, of PS, and (b) the residue fields of the q,?
The theorem provides a sufficient condition for the (p&),, to be prime ideals, coupled with
the separability of the residue fields of the q;; but that condition is not universally necessary,
as Krull himself has remarked. It will be shown, in Theorem 7, that the condition is neces-
sary as well as sufficient when & has a finite R-basis. A related question, of some importance
in geometrical applications, is whether (p&), = @;, and the residue field of g, is separable,
irrespective of the behaviour of q,,...,q,. That is a question untouched by the general
discriminant theorem; it is solved, under the assumption that p is ‘strongly convergent’,
by Theorem 13.

THEOREM 7.1 Suppose that S has a finite R-basis. Then the following two propositions are equi-
valent: (i) p2D; (i) PS),, = i, and the residue field of q; is separable over that of p, for all
1=1,...,e ‘ , _

With Theorem 6 already available, it only remains to show that (ii) implies the in-

~equality nj4-...4+n,>n. The problem is transferred to R, and S, by (4.3) and (4.4), so
it may be assumed without loss of generality that p is a maximal ideal. In that case, when
(i) holds, S/pS is a semi-simple separable algebra of rank nj+...+n, over R/p. By
Theorem 2 (2), the rank of S/pS over R/p is at least n.

5. LEMMAS ON CONVERGENT PRIME IDEALS

It has been mentioned that certain problems in ramification theory are untouched by the
theory of the discriminant-ideal, as represented by Theorems'6 and 7. The rest of Part I is
devoted to such problems. The results of §§ 6 and 7, applicable to strongly convergent prime
ideals, are generalizations of the main classical theorems on prime ideal structure associated
with the classical different-theorem.} The need for such generalizations is placed beyond
doubt by the fact that a case of Theorem 13 has already been used in the geometrical papers
of Zariski. In §7 there is also a discriminant theorem, Theorem 10, which to some extent
overlaps Theorem 7. If the maximal condition holds in R, every prime ideal of R is strongly

1 The statement and proof of Theorem 7 would clearly remain valid if, contrary to one of the conditions
laid down in the Introduction, L were inseparable over K.

1 Cf. Krull (19396), Fricke (1928), Dedekind & Weber (1882). The classical different-theorem is not
actually a special case of Theorem 13, but can be deduced from Theorem 8 by a similar method. Theorems
for minimal prime ideals, deducible from the classical theorems by the method of prime ideal quotient rings
(as indicated in n. 35 of Krull (1935)), are likewise included in the results of §§ 6 and 7. The preceding remarks
about the classical different-theorem do not apply to the more penetrating ramification theorem of Grell (1936).

The first step towards a generalization of the kind effected here was taken by Zariski, who proved special
cases of Theorems 9 and 13 (Theorems 4 and 7 of Zariski (1939); Theorem 11 of Zariski (1940)). As far as
I am aware, the only previous theorems of this type other than those mentioned above, apart from the
general discriminant theorem, are to be found in the theory of complete (rank 1) evaluated fields.
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convergent (Krull 1928). Thus the results on strongly convergent prime ideals are valid
in the integral domains most frequently used in algebraic geometry.

The key to the theorems on prime ideal structure is Theorem 8, proved in § 6 for convergent
prime ideals. This represents a further gain in generality; the maximal ideal of a rank 1
valuation ring is always convergent, but is strongly convergent only in the simple case when
the valuation is discrete.

The present section is entirely occupied by lemmas. Notwithstanding the title, Lemmas 3,
5, and 6 are independent of the notion of convergence.

Definitions. A prime ideal p of R is convergent if

lim (a7), = (0),

r—>

for every R-ideal a < p with a finite R-basis; p is strongly convergent if
| lim (pr), = (0).

r—> 0

(5.1) p is convergent if and only if the maximal ideal pR, of R, is convergent, and p
is strongly convergent if and only if pR,, is strongly convergent.

That the convergence of pR, is sufficient for the convergence of p is made 0bv1ous
by the relation (a”), = (a™R,) n R. To prove its necessity, note that any R, -finite ideal
b < pR, has the form b = aiR,,, where a = p is an R-ideal with a finite iR-basis. If

ula (u,aeR;a40; u£0modp)

belonged te b” for all 7, a would belong to "~ R = (a”),, for all r, contrary to the definition of
convergence. The proof of (5.1) for strong convergence is similar.

LEmMA 2. Let a,f,, ..., [, be elements of S, and a =p an R-ideal with a finite basis. If p is con-
vergent, and for each r=1 there exists w,e R such that

w,#0 (P),
w,aedS+K. (.., 0),

then we K. (By, ..., 0,), i-e. « is linearly dependent on f, ..., B, over K.

Assume, without loss of generality, that f,...,f, are linearly independent over K.
Supposing the conclusion false, it must be possible to choose elements y,,,, ..., 7,-; of &,
such that the set @,y ..., B Yis1s --+> Va1 is @ K-basis for L. Denoting the dlscrlmmant of

this basis by D, it is seen by (1.3) that Dw,a belongs to
a’. (a"ﬂl’ "',ﬁta Ves1s oees 7n—l) +K (ﬁl’ '“,ﬂt)'

Because a, Sy, ..y By Vir1s --+5 ¥u—1 are linearly independent, it follows that Dw,eq”. Thus
De (a7), for all 7>1, contrary to the convergence of p.
An almost identical argument would establish

LemMA 2'. Let a,f, ..., f, be elements of S. If p is strongly convergent, and for each r>1 there
exists w,e R such that

wr—7éo (p)9

w, e P S+K.(f,.., ),
then ae K. (B, ..., 5.
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LemmA 3. Let q be a prime ideal of S, b an integral ideal of S, and ®(y,, ..., y,.), ¥y .., ¥)
polynomials over S in indeterminates y,, ..., Y,,- If

(Y15 +esYp) V(Y15 -5 ¥m) =0 (),
and ‘ (I)(yl’ aym)io (C')a
then WY1 s Ym) =0 (by).

Proof. Substituting y% for y; (i =1,...,m), and denoting O(y4,...,y"), V' (y4,...,y") by
®(y), ¥'(y), one obtains the congruence ®(y) V' (y) =0modb. When the positive integers
li,...,1, are chosen suitably, the distinct coefficients appearing in ®(y) and ¥'(y) are pre-
cisely those of the original polynomials ®(y,,...,y,,) and ¥(y,, ...,¥,,). Thus the lemma is
reduced to the case of one variable: given that

(@t ...+ y) (fot... +5y) =0 (b)
and (gt ... +a,y°) £0 (q),

where the «; and g, belong to S, it is necessary to show that

(Bo+---+Fy)=0 (by).
By the Dedekind-Mertens Lemma, |

(0‘0) "-aas)Hl (ﬁO’ '“aﬂt) = (“Oa --°aas)tb

and the result follows, since the G-ideal («, ..., %,) is not contained in q-

The preceding lemma may, in particular, be applied with R in place of G, p in place of
q, and an integral R-ideal a in place of b; so applied, it shows that the isolated component
of a.R[yy, ---» ¥,,] with respect to the prime ideal p.R[y,, ..., ¥,] is a,.R[y,, ..., y,,]. More-
over, given any finite ideal W< p. Ry, ...,y,.] of Rlyy, .- ¥,nls there exists a finite ideal
a<p of R, such that A<=a.R[y,, ..., v,]. Hence

(5.2) If p is a convergent prime ideal of R, and y,, ...,y,, are indeterminates, then

PRy Yl

is a convergent prime ideal of R[y,, ..., y,,]. If p is strongly convergent, then p.R[y,, ..., y,,]
is strongly convergent.

This result explains why the use of indeterminates is effective in §§ 6 and 7. Direct applica-
tions of (5.2) will not be made in those sections, although doubtless it would be possible to
do so. Instead, the following extension of Lemma 2 will be used:

Lemma 4. Let yy, ..., Y, be indeterminates (m=0), 4, B,, ..., B, elements of Sy, ...,y, ], and
a < p an R-ideal with a finite basis. If p is convergent, and for each r=1 there exists W, e R[y,, ..., v,,]
such that
W.#0 (p),

I’V;A € (are)p'e[yl: ""ym] +K(.’/1a ’ym) . (Bl’ -uaBt):
then A is linearly dependent on By, ..., B, over the field K(y,, ..., ¥,,).

1 See § 9 of Prifer (1932).
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Given any element 7, of (0’S),.S[y,, ..., ¥,,], there exists an element v,e R, incongruent
to zero mod p, such that v,7,€a”. S[y,, ...,y,]. Hence there exists Ve R[y,, ...,¥,,] (namely
V. =v, W), such that

A V#0 (p),

VA€ .CYys s Yl + K1y s V) - (Bry s B

The preceding remark reduces Lemma 4 to a case of Lemma 2, with

R - Ynls Sy --9nls P-Rlys 9,1, and @Ry, ..., 7,]

in place of R, S, p, and a respectively. The convergence of p.R[y,,...,y,] is secured
by (5.2).

LemMaA 5. Suppose that p is maximal, and that S|q, is separable over R/p. Let o be an element of
S, and g(x) its minimal polynomial mod q,. Then, given any y € q, and any integer r =1, there exists

f €S satisfying the congruences
p=a(q1), g&(h)=y (i)

After noting that the lemma is trivially true when r = 1, the proofis obtained by induction
over r>2. Assuming the existence of £,_; such that |

Pror=a (@), &f-)=7 (ai7h),
then 8B +0=g(F,-1)+C&'(F,-1) (a7)

for any (e q;~!. It only remains to take.f, =f,_,+{,_,, where {,_, is a solution of the

congruence
Gr&' (Bror) =7 —8(Br1) (a1)-

Such elements {. e q]~! exist, because ¢g'(f,_,) =g'(«) 40 mod q;.

The next lemma is concerned with ‘higher congruences’. In the most intelligible case,
when m = 0, it is essentially equivalent to a theorem about polynomials over a field complete
with respect to a rank 1 valuation;t in number theory, with appropriate specializations, it
appears as the second theorem of Schénemann.}

LeMMA 6. Let p be a maximal ideal of R, y,, ..., Y, indeterminates, and f(x), g(x), h(x) monic
polynomials in x over Ry, ..., y,,], such that

S(x)=g(%) h(%) (p)-

Suppose _further that g(x) and k(x) have no common factor mod p.
Then_for every r=1 there exist an element w, of R[y,, ..., ¥,,], and polynomials g,(x) and h,(x) over
RI[Yy, - Ypl> both having leading coefficient w,, with the following properties:

w, %0 (p),
wlf (%) =g,(x) h,(%) (a"),
& (x)=w,g(x) (a), h(x)=w,h(x) (a),
where a =P is a finite R-ideal independent of . When m = 0, w, may be replaced by unity.

T Albert (1937), p. 296. 1 Fricke (1928), p. 67.
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We use the abbreviation ‘deg f’ for the x-degree of f(x); similarly with any other poly-
nomial in x over R[y,, ..., ¥,,]- Let deg /= . Gauss’s lemma shows at.once that the images
of g(x) and /(x) mod p are mutually prime polynomials in x over ¥(y,, ..., ¥,,), where ¥ is the
field R/p. By an elementary theorem applied to polynomials over ¥(y,, ...,4,,), there exist
WeRly,,...,y,], and polynomials U(x),V,(x) over R[y,, ..., ¥,,], such that

W0 (p),

Vi(x) g(x) + Ua) h(x) = Wt @)’} (1= 0,0yt —1)
deg U;<degg, degI/;<ngk g eeey b 1),

Since congruences of polynomials mod p involve only a finite number of coefficients, there
is a finite R-ideal a = p, such that f(x) =g(x) A(¥) mod a, and

(5.3) V(x) g(x) +U(x) h(x) =Wai (a) (i =0,...,¢—1).

The lemma is verified when r = 1, with w, = 1, g,(x) = g(x), and 4,(x) = A(x). Now
proceed by induction over r>2, assuming the existence of w,_,, g,_,(x), and £,_,(x). The

difference w?_, f(x) —g,_,(x) h,_,(x) has x-degree less than ¢, and its coefficients are elements
of a- V. R[y,, ..., ¥,,]. Multiplying (5.3) by these coefficients, and adding, it follows that

0,1 (%) (%) 1, (%) h(x) = W(w3_y (%) = g1 () (%)) (00),
where u,_,(x), v,_,(x) are polynomials in x over R[y,, ...,¥,,], such that
U, (¥)=0=1,_,(x) (1),
degu,_;<degg, deguv,_,<degh.
The proof is completed by putting w, = Ww

g,(x) = er—lgr-l( ) Fu,_y (%),
and hy(x) = W, _yh,_y (%) +v,_,(x).
With these substitutions, -
G (%) by (%) —w2f(x) = Ww?_i{v,_1(x) g(x) +u,_y(x) h(x) — W(w?_ f(x) — g1 (%) b1 (%))}
W,y (%) (b (2) =, A (%)}
+Ww,_ 10,1 (%) {81 (%) —w,_, 8(x)}
(%) 2y (%) |
=u,_y(x) v,_,(x) ()
=0 (a7), since 2r—2>=r.

6. GONVERGENT PRIME IDEALS

Definition. Supposing that p is a convergent maximal ideal (of R), consider sets of elements
&y, ..., ¢,€ S, with the following property: There exist a finite R-ideal a = p, and a non-zero
element ¢ e R, such that

G =R (4, ...,0,) +(aS), forall r>1.
The ramification rank p, of q, is the smallest value of p for which such a set a;, ..., «, exists. The

ramification ranks p,, ..., p, of g, ..., g, are defined similarly.

VoL. 240. A. 39
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Clearly (by (1.3)) the p; exist and are not greater than n. A definition of the p; when p is
convergent but not necessarily maximal is given later in this section. The definitions are
restricted to convergent p, because it is only when p is convergent that we have a proof of
their consistency. So far as this paper is concerned, the real significance of the P; is expressed
by Theorem 8. ’

THEOREM 8. Suppose that p is a convergent maximal ideal, and let 0 be any element of S[y,y ..s Y,
where y,, ..., y,, are indeterminates (m=0). Write f(x) for the characteristic polynomial of 0, g,(x) for
its minimal polynomial mod q;, and let the x-degree of g;(x) be k;. Then p; is divisible by k;, and

Sx)= 1T (&ix)7" (p).

The well-known case when R is a field can be dismissed at the outset; it may therefore be
assumed that p = (0). There exist y,, ..., y,€ S, satisfying the congruences

‘ ?1 (@), 7=0(q;) (I<izkj<e)
with respect to the pairwise disjoint ideals g,. Because p<(0), R (not being a field) has
infinitely many elements; consequently it can be arranged further that y,, ..., 7, be primitive
elements for L over K. Introduce new indeterminates zi, ..., z,, and proceed to work with
the element
A=zt 2z Y

which is a primitive element of L(Yyy .. Yps Z1s v Z,) 00€r K(415 .oy Yps 215 -5 Z,). The minimal
polynomial of x modq; is G(x) = g,(x—z,;). Thus x enjoys the further propertyf that the
G.(x) are mutually incongruent mod p. The characteristic polynomial F(x) of y has its coefficients
in Ry, -.es ¥pms Z15 - -+, 2,] ; when the presence of these other indeterminates in F(x) is im-
portant, we write : ' e P ‘
F(x) = F(x341 s Ym3 21 -+ 0r Ze)- |

After these preliminaries, the proof of Theorem 8 falls into four parts: in (1), it is shown that
F(x) is congruent modp to fI (G,(x))%, where the [; are strictly positive integers; in (2), it

1

is shown that [k, <p;; in (3), the inequality p, +...+p,<n is derived from part (1); and in
(4) these results are collected together to complete the proof.

(1) Since F(x) = 0=0mod q;, F(x) is divisible modp by each of the mutually incon-
gruent irreducible mod p polynomials G;(x), and hence also by their product. The mod p
factorization of F(x) thus has the form

F(x)=H(x) H (Gi(%))" (9)5

where the [, are strictly positive integers, and H(x) is a monic polynomial in x over
, RIY1s -eos Ys Z1s o+ Zels
such that H(y)#£0 (q,) (i=1,...,¢).

1 These two properties of ¥ are important in the proof.. If it were practicable to confine attention to the
characteristic polynomial of an element « € G, assumed to have the analogous properties, the whole dis-
cussion could be simplified considerably; the appeals to Lemmas 3 and 4, and the 1ntroduct10n of the z;,
could be avoided.
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By Lemma 6 there exist for every r>1 an element W, of R[y,, ..., ¥,u 215 - -+5 Z,], and poly-
nomials M (x) and J,(x) over R[yy,...s Y Z15 --+» Z,], Poth having leading coefficient W,
with the following properties:

W,£0 (p),
W2F(x)=H,(x) J,(x) (a7),

B () =W H(x) (a), Jx)=WII(G(x)" (a),
where a < p is a finite R-ideal independent of 7. It follows that
H(x) J,x)=0 (@S),
H,(x)=W,H(x)#0 (q))-
Hence, from Lemma 3, LX) =0 (a®),, (i=1,...,¢);
in other words, by (4.8), J(x)=0 (arS),.

Using the convergence of p for the first time through Lemma 4, and denoting the x-degree
of H(x) by u, it is seen that y»~# is linearly dependent on y*=#~1 ... ¥, 1 over the field
Ky, .. .sYm 215 -+, 2,). If g were positive, this would contradict the primitivety of y. It is
concluded that x = 0, i.e.

F)=TTG)" ().

(2) By Lemma 6 there exist for every 7>1 an element V, of R[y,, ...,4,,2,, ..., 2,], and
polynomials P.(x) and Q,(x) over R[y, ..., ¥, 215 .+ Z,], both having leading coefficient

V., with the following properties:
V#0 (p),

VEF() =P (x) Qx) (®)),
B =V(G(=)" (82), Q=) =V IT (G;(x)" (5,
where b, = p is a finite R-ideal independent of . It follows that
B@WeW=0 (%),
B=T{GM)20 (@) (=2 .0s9).
Hence, by Lemma 3, Q=0 (07S),, (j=2,...,e).

By definition of p,, there exist elements a;, ..., 2, € S, and a non-zero element ¢ e R, and
a finite R-ideal b, = p, such that

SR (a,...,2,) + (058), forall r>1.
The usual determinantal method may now be applied: this relation implies the existence
of a;,€ R[Y1, ...s Yms Z15 -5 2.}, such that
P1 .
cxaiz'zfzij,aj (032);, (E=1,..,p57r=1).
=

39-2
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With R, (x) denoting the determinant | xJ; —a;;,|, it follows that
R, (ex) =0 (05S)q,
whence ¢R,(cx)=0 (bg@)ql.
Combined with (4.8), the above results lead to the new congruence
oR,(cx) & (1) =0 (b°S),,

where b = b, +b,. Using Lemma 4, it is seen that ¢/1*1yr1tn-4ki is linearly dependent on
yPren—hkim10 v 1 over the field K(yy, ..., Y, 21 ---» 2,). If [}k, were greater than p,, this
would contradict the primitivety of y. It is concluded that /, £, <p,, and similarly

likigpz (i: 1, ...,(3).

(8) Inpart (1) of this proof, 4 is an arbitrary element of S[y,, ...,,,]. ¢ may therefore be
replaced by zero; and, according to (1), the characteristic polynomial of z,y,+... 42,7,

e
is congruent mod p to T (x—z,)%, where ¢, ..., t, are positive integers. Substituting 1,0, ..., 0
1 B
for z,,z,, ..., z,, one obtains the congruence
['(x)=(x—1)4x""4 (p)

for the characteristic polynomial I'(x) of y,. By the simplest case of Lemma 6 there exist,
for every r>1, monic polynomials A,(x) and E,(x) over R, with the following properties:

['(x)=A4,(x) E(x) (¢),
A (x)=(x—1)" (g), E,(x)=x""(g),
where g = p is a finite R-ideal independent of r. It follows that

A.(71) E, (7)) =0 (g7S),
E, (1) =170 (ay),
whence A (7)=0 (Qre)ql'

Thus Ry sR.(Lysnrt™) +(07S),,

for all 7>1; and this, by definition of p,, implies that p,<¢,. Similarly p,<¢, 1 =1,...,¢),

and consequently
Pt +p <0

(4) The relations 2Lk, = n, Lk,<p, and Zp,<n, proved in (1), (2), and (3), could not
hold unless 2p;, =n and [k, =p; (1 =1,...,¢). Thus

e

- F(x) =TI (G(x))7"% (p).

1
Finally, substitute zero for zj,...,z,: then F(x) = F(x;y, ..., 4,552y, .-, 2,) becomes f(x),
G;(x) = g;(x—z;) becomes g,(x), and the preceding congruence reduces to

z

Sx)= T (=) (p)-
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It is now possible to state the

Definition. When p is convergent but not necessarily maximal, the ramification rank of q;
is the ramification rank, as previously defined, of q,5,.

The consistency of the two definitions must be verified. To that end, supposing p
convergent and maximal, let the ramification ranks of q; and ¢,S, (first definition) be
denoted temporarily by p; and p;. It is clear from the deﬁnltlon and (4.3) that p; <p;; but
Sp; = n = Zp}, by (5.1) and Theorem 8.

CorOLLARY 1. For any convergent p, p,+...+p, = n.

COROLLARY 2. If p is convergent, p; is divisible (1) by n;, if the residue field of q, is sepamble over
that of s (i1) by pn;, if the residue field of q; is inseparable over that of P and has characteristic p.
~ There is no loss of generality in assuming also that p is maximal, by (4.4) and (5.1). Then
S/q; is known to contain an element of degree n; or pn; over R/p, in the respective cases

(i) or (ii).
- COROLLARY 3. With the notation and subject to the conditions of T/zéorems,
(&(@)rH=0 (pS)g;:
From part (1) of the proof of the theorem, it is seen that H (G(x))"=0mod pS, and
G;(x )§é0mod a (J=2..e). By Lemma 3, (G (x))’l——Omod (pG)q ; hence, substituting

zero for z,...,z,, (gl(ﬂ))’l——Omod (PS)q,:
The following is a simple deduction from Theorem 8 and Corollary 2:

(6.1) Ifpis convergent and maximal, and S/q, separable over R/p, then
D pS+q,p/m-l,

A somewhat similar result can be proved without any restriction on p:

(6.2) (qyp...nq,)D=PpS.

Proof. For any 2eS and fe (ql n...n qe), in the notation of Theorem 17,

fd(e) = Z«%’ AVE

and the right-hand side belongs to p&, by (4.10).
THEOREM 9. If the residue field of p has characteristic zero, and p s convergent, then

; q;i)i/nis (pG)q (Z= 1’_”,3),

i.c. the exponent of the primary ideal (pS),, is at most p;fn;.

As usual, it may be assumed in the proof that p is maximal (by (5.1) and (4.3)). Itisalready
known from (4.12) that the exponent of (p&S), is finite. (Alternatively, under present
conditions, the finiteness of the exponent could be deduced from Corollary 3 of Theorem 8
by reasoning similar to that below ). Let € S be a primitive element for S/q; over R/p,
and g(x) its minimal polynomial modq,; g(x) is of degree n;, and g'(«) is not in q,. By
Lemma 5, « can be chosen so that

g(@)=0 (p&),,.
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Lety,, ..., y, beindeterminates, and y,, ..., y, any s elements of q,, where s = p,/n;. According
to Corollary 3 of Theorem 8,

{glaty v+ +y,7)F =0 (pS),,

By choice of «, this congruence reduces to

{4970 8@ 4. F =0 (pS)q,,
where the omitted terms are of more than the first degree in y,, ...,y,. Hence it is seen that
€ (PS)q,:
7. STRONGLY CONVERGENT PRIME IDEALS

The object of this section, and its relation to previous theories, have been fully explained
in § 5. In Lemma 7, it is shown that the defining property of the p; can be expressed more
simply when p is strongly convergent. It may not be amiss to point out that, if strongly
convergent prime ideals were the only interest, the o; of the proof of Lemma 7 could be defined
to be the ramification ranks of the ;. For strongly convergent p, the results of § 6, including
Corollary 1 of Theorem 8, could then be proved with the ¢; in place of the p,. This remark
indicates the lines of an alternative proof of Lemma 7. It is scarcely surprising that Theorem
13 lacks the precision of the classical Different-Theorem. A fuller generalization of the
classical theorem would be provided by the contention that d & (pS), ,. when the residue
field of p has characteristic zero; but that contention is falsified by the example of Zariski

(1939, p- 272).
(7.1) Ifm is an R-submodule of S such that

6 = p@ +ma
then S =pS+m forall r>1.

The proof by induction is trivial. Hence, from (7.1) and Lemma 2’,
(7.2) If p is a strongly convergent maximal ideal, the algebra S[p& has rank at least n over %/p

THEOREM 10. Suppose that p is sirongly convergent. Then the following two propositions are equi-
valent: (i) p2®; (i) (pS),, = q» and the residue field of q; is separable over that of p, for all
i=1,

Proof Bearmg (5.1) in mind, the proof is the same as that of Theorem 7, except that
(7.2) is used instead of Theorem 2 (2).

LemMA 7. If p is a strongly convergent maximal ideal, p, is the smallest integer p with the following
property: There exist p elements a,, ...,a,€ S, and a non-zero element ¢ € R, such that

(SR (@ enrt,) + (p7S),, Sfor all r>1.

Let the smallest integer with the property specified in the enunciation be ¢, and define
Gy, ..., 0, similarly. Since Corollary 1 of Theorem 8 asserts that p,+...4-p, = n, and it is
obvious that ¢,<p,, the lemma will be established if it is proved that ¢, +...+7,>n.

Let fe S be a primitive element for L over K. Take ay, ..., %, € S, and a non-zero ¢, e R,

such that
S =R.(2,...,%,) +(p'S), forallr=>1.
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Then there exist a;;,€ R, such that

ijr
clﬂaizjglaij,aj PS),, (=1,..,07=1).

As in part (2) of the proof of Theorem 8, it follows that

19,1 (,8)=0 (p"S),,5

where @, (x) denotes the determinant | xc?i)-—aij, |. Similarly, there exist monic polynomials

D,,(x), ..., D, (x) over R, of degrees 7, ..., 0,, and non-zero elements c,, ...,¢,€ R, such that

6D (c.f)=0 (p7S),, (i=1,...,e;7r=1).

By (4.9), 1T6®,(ch) =0 (1S).
Using the strong convergence of p through Lemma 2', it is deduced that IT¢7i*1 4% is linearly
dependent on gor+-toe=1/ f 1 over K. This would contradict the primitivety of § unless
o +...+o,=n.

The following result analogous to (7.1) forms part of the proof of Theorem 11. (It would
also have been possible to use (7.3) in the proof of Lemma 1.)

(7.3) Suppose that p is a maximal ideal (of R), ¢ an integer between 1 and ¢, and m an
R-submodule of S such that
S=m+ N (pS),,

1<j<t
Then S=m+ N (pS),, foranyr=>1.
1<j<t
It must first be observed that
N p8), =pS+ N (pS),, foranyr> 1.
<j<t

1<j< 1<j<t

In fact, the ideals (p"&),, are respectively q;-primary, so the only prime over-ideals of their
(direct) meet are qy, ..., q;; the right-hand side is therefore the meet of its isolated com-
ponents with respect to q, ..., q;, by (8.2). Hence the right-hand side contains the left; but
the reverse inequality is obvious. Substituting back, therefore

&= pS+m+ N (P&,

1<j<t

From this, using (7'1), it follows that

S=pCS+m+ N (pS),

1<j<t

=m+ N (prS),,.
1<j<t
THEOREM 11. Suppose that p is strongly convergent and maximal. Then Am,-}pi (t=1,...,e),
where A; denotes the depth of the S-ideal (pS),,. If, further, S[pS has rank n over R/p, the sign
of equality may be inserted.
In the proof that A,7,>p,, it is naturally assumed that A, 7, <oo. Itis well known that
every composition-factor of the G-module &/(pS),, is module-isomorphic to S/q,, and
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thence that the rank of S/(pS),, qua R/p-module is 7,4,. Accordingly, let elements
s oeey &ypn, Of S form an R/p-basis for S/(pS),

S=R. (“la '-'aanliu) + (pe)ql
It follows from (7.3) that S =R () .e0styn,) +PS)g,
for all r>1, whence p,<n,4, by Lemma 7. When &/p& has rank » over R/p, Zp;, = Zn;A,.

THEOREM 12. Let p be a strongly convergent maximal ideal. Suppose that there exists o € S such
that S = pS+R[a], i.e. that S[pS over R[p possesses a primitive element. Let the characteristic
polynomial of « be f(x), and its mod p factorization

Sx)=gt(x) ... gk(%) (p) (4>0),
where the g,(x) are monic polynomials over R, mutually incongruent and irreducible mod p.

(1) e = t. With a proper arrangement of the suffixes, g,(x) is the minimal polynomial of a mod q;;
the degree of () is m; p; =

(2) q; = S. (P’gi(“)), (pe)ql =G. (p5g§i(“))'

 (8) Forgiveni =1, ..., ¢, the only distinct S-ideals between S and (pS),, inclusive are S . (p, g5 ()
(s=0,1,...,1); they form a composition series for S|(pS),,. The exponent and depth of (pS),, are
both equal to I, = p;[n,. - v

In view of the much simpler nature of the present theorem, the preceding theorems are
used sparingly in the proof. ’

By (7.2), the rank of A = G/p& over R/p is exactly n. This algebra is the direct sum
A=A ®...®A, where ,

Ay = ((pG)g,n -0 (18),)/(#S) = S/(pO),

and cyclically. Let the length of A;, which is the depth of (p&),,, be A;. Let the minimal
polynomial (of degree #;) of e mod q; be ¢,(x). From well-known representation theory, the
characteristic polynomial of @ qua element of A is ¢{1(x) ... # (x) mod p. Since « is primitive
for A, it is seen that the ¢,(x) are mutually incongruent mod p, and that |

Sx)=¢fi(x) ... g2e() (p)-

It follows that ¢ = ¢; with a suitable arrangement of the suffixes, the ¢,(x) may be identified
with the respective g;(x), and the 4; equated to the /. Because the ¢,(x) are mutually in-
congruent mod p, ¢{1(a) . A; = A; when j=1; that is to say, g(«) .A; = A; when j+1; and
of course g («) annihilates A;. Hence

i) A=A® ... DA,
a relation which is equivalent to  &.(p, g(a)) = PS)q,
The rest of the theorem, except for the equation p; = #;, is included in (9.5) and Theorem 20.

The fact that p, = n;/; is an immediate consequence of Theorem 8.
The following result is a partial converse of Theorem 12:

(7.4) If p is maximal, and R/p has characteristic zero, and if the exponent of (pS),, is
equal to its depth for all i =1, ..., ¢, then S/p& has a primitive element over R/p.
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- In that case the exponent and depth are finite, by (4.12). The theorems of § 9 are therefore
applicable to S/pS, which has a primitive element over R/p by Theorems 20 and 18.
The situation considered in Theorem 12 is somewhat special: there may be no element
with the property postulated for «, even when S/p& has rank n over R/p. An example is
given on p. 272 of Zariski (1939), where the exponent of (pS),, is less than p;/n;. On the
other hand, in a case important in the theory of algebraic curves—R the ring of polynomials
in one variable over a field of characteristic zero, and & integrally closed—the conditions
of (7.4) are fulfilled for every non-null p. That is largely why the Different-Theorem of
Dedekind & Weber (1882) is easier than the corresponding theorem for algebraic numbers.

(7.5) Suppose that p is maximal, and S/q, separable over R/p. Then there existsxe S
such that ‘

(i) ais primitive for S/q, over R/p;

(i) gy(2)#£0modgq; (j=2,...,¢), where g, (%) is the minimal polynomial of @ mod q;.

Proof. Let f be an element of S, primitive for S/q, over R/p, and let its minimal poly-
nomial mod g, be g;(x). It can be arranged that # do not belong to q,; for that is inevitable
when 7, > 1, and is easily secured when n; = 1. Taking « to be a solution of the congruences

a=f (@), 2=0(q) (=2 ..,6),
then - &i(®)=0 (a),
and - 41(0)=g,(0)50 (q;).

TuEOREM 13. When p is strongly convergent, the relation’d & g, holds if and only if both (pS), = i,
and the residue field of q, is separable over that of p.

In the proof'it is assumed that p is maximal as well as strongly convergent, this restriction
being justified by (5.1), (1.7), (4.3), and (4.4). The characteristic polynomial and minimal
polynomial mod g, of « are denoted by f(x) and g, (») respectively.

The condition d & q, is necessary. Take a to be such an element as is supplied by (7.5). By
Theorems 8 and 11, (p, = n, and)

S0 =) (x) (p),
where h(a)=£0 (q;)-
It follows that d(a) =g1(a) h(a) £0 (q)-
The condition <& q, is sufficient. Take a to be an element of G such that d(«) is not in g;.

Because (pS),, is q,-primary, d(a) has in G an inverse mod (pS),, ; hence, using the relation

d(2) .S =R[a], it follows that .
S = (p©S),,+ R[]

A fortiori, o is primitive for S/q, over R/p. Now f(x) has a mod p factorization
- S =gix) hx) (p) (s=1),
where , k()0 (q,)-
By choice of a, ’ sgia) g1 (@) A(x)£0  (q)-
From this it follows, first, that s = 1, whence g,(a) =0 mod (pS) q,- Thus the R/p-modules
S/q, and S/(pS),, have the same rank, viz. the degree of g (x) ; in other words, (pS),, = q;.

(This fact is also a direct consequence of (6.2).) Secondly, it follows that g(«¢)%0mod q,;
so G/q,, being obtained by adjunction of a separable element to R/p, is a separable extension

Vor. 240. A. 40
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of the latter. Moreover, by Theorem 8, the equation s = 1 obliges « to satisfy the second
condition of (7.5).

CoROLLARY 1. When p is sirongly convergent and maximal, and d & q,, elements o € S such that
d(a) 1s not in q, are characterized by the two conditions of (1.5).

COROLLARY 2. Assuming that p is strongly convergent, and the residue field of q, separable over that
of p, we have (pS)y = q, if and only if p; = n,. |

Theorem 13 is subject to two restrictions: the strong convergence of p, stated explicitly,
and the separability of L over K, assumed throughout Part I. It is shown in § 10 that neither
of these restrictions is superfluous.

PART II
8. GENERAL ADDITIVE IDEAL THEORY

This section contains an outline of some results in the ideal theory of an arbitrary integral
domain R; its scope is limited to supplying the needs of Part I. The restriction to integral
domains is convenient, but not always essential. For a systematic account of the theory,
reference should be made to Krull (1929), or to the summary in n. 3 of Krull (1933).

The fundamental theoremst are

THEOREM 14. Let a<R be an R-ideal.

(1) a is contained in at least one maximal ideal, and hence in at least one prime ideal, of R.

(2) Any prime over-ideal of a contains a minimal prime over-ideal of a.

THEOREM 15. Let p be a minimal prime over-ideal of an R-ideal a=R. Then a, is p-primary,
and is the smallest p-primary over-ideal of a.

These theorems have some interesting consequences.

(8.1) Suppose M is any field containing R, and mv any R-submodule of M. Then m = Nm.R,,
where-p runs through all maximal ideals of R.

Progf. Given any f e M, not contained in 1, let b be the set of all 4 € R such that 4 em.
Being an integral R-ideal distinct from the unit ideal, b is contained in at least one maximal
ideal p of R. If £ belonged to m.%R,, there would exist u € R satisfying the relations

which is impossible. ufetm, uz0 (p),

(8.2) For any R-ideal a=R we have a = Na,, where p runs through all maximal ideals
of R. The formula holds when p runs merely through all maximal over-ideals of a.

This follows from (8.1)—a, = RnaR,, and a, =R if ppa. Combining (8.2) with
Theorem 15 we deduce (8.3), with (8.4) as a corollary: v

(8.3) If an R-ideal q=%R has only one (necessarily maximal) prime over-ideal p, then
a is p-primary.

(8.4) If p is a maximal ideal of R, the product of a finite set of p-primary ideals is p-
primary; and any integral over-ideal (other than R) of a p-primary ideal is p-primary.

Inversive Ideals.. An R-ideal a is inversive if there exists an R-ideal b such that ab = R.
When this equation holds, b necessarily coincides with R:a, because

bsR:a= (R:a)abch.
Thus a is inversive if and only if (R:a) a=R.

t Theorem 14 can be proved in a few lines by means of Zorn’s Principle. For Theorems 14 and 15,
(8.2) and (8.3), see Krull (1929): Lemma, Theorems 2, 5, 6, and remarks following the latter.
1 (8.5) is taken from Krull (1930), and (8.6) from Helms (1933).
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(8.5) Any inversive ideal has a finite basis.
The proof is simple. If ab =R, 1 =a,b,+...44a,b, (a;€q, b,eb); and hence

aca.(by,....b,) (ar,...,a,) cab.(ay,...,a,) < (ay,...,q,) =a.

(8.6) IfR hasonly afinite number of maximal ideals, every inversive R-ideal is a principal
ideal.

Suppose that ab = R, and let the distinct maximal ideals of R be p,,...,p,. Because a
is inversive, ap,<a; there exist elements ;€ a such that ¢ £0modap, (i = 1,...,£). There
also exist ¢y, ...,c,e R, satisfying the congruences ¢;=1mod p;, ¢;=0mod p; (1<i+j<1),
with respect to the pairwise disjoint ideals p,, ..., p,. Putting a = a,¢,+ ... +a,c, it is seen
that a0mod ap;, Thus ab<p; (all i) although ab<R; ab =R by Theorem 14; and
consequently a = a%R. ' ‘

(8.7) A non-null R-ideal a is inversive if and only if (i) a has a finite basis, and (ii) for every
maximal ideal p of R, aR, is a principal ideal of R,,.
The necessity is included in (8.5) and (8.6). Condition (i1) implies that

aR,. (R,:aR,) =R, ie. a(ﬁR’i:a) =R,

for every maximal ideal p. According to (i), a = R.(ay, ..., q,), say. This implies that the
obvious inequality R,.(R:a) = (R,:a) reduces, in the present case, to equality. (Namely,
if ba =R, there exist elements #; of R not in p, such that u;ba, e R, whence 4, ... u ba = R.)
Using these relations, it follows from (8.1) that '

a.R:a) =NaR:a) R, =Na(R,:a) =NR, =R.

The following simple result belonging to the same order of ideas is also used in Part I:

(8.8) Suppose R has only one maximal ideal B. If a subset U of the quotient field of R
generates a principal ideal, () = o, then a generating element for (A) can be selected
from .

In fact, Wt bP provided b+40; and any element of 4R not in 4P is an associate of b.

9. COMMUTATIVE ALGEBRAS

Some results in the theory of commutative algebras, which find numerous applications in
Part I, are given here. In this section, A denotes a commutative algebra over a field f, of
finite rank m> 0. It is assumed that A has unity, denoted by ¢, and that 1.¢ = ¢, where 1 is the
unity element of f. The zero elements of A and f are denoted by 0 and 0 respectively.

The definition of the regular representation, and definitions of the characteristic poly-
nomial and norm N(a) and trace 7(«) of an element a € A, need not be reproduced here. The
discriminant of « is defined to be D(«) = D(e,a, ...,a™ 1) ; but it is not hard to prove? that
D(a) is equal to the discriminant of the characteristic polynomial of «. It follows from the
transformation law for discriminants that the discriminant of'm linearly dependent elements
of A is zero. For m-term bases of A over f, however, there are two possibilities: either every
basis has zero discriminant (A has discriminant zero over ¥), or every basis has non-zero

1 Cf. Krull (19394), Lemma 4.
40-2
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discriminant (A fas non-zero discriminant over ). These alternatives are elucidated by a
theorem of E. Noether: ¥
Definition. A is semi-simple and separable if it is the direct sum of separable extension-fields of £.

THEOREM 16. A has non-zero discriminant over ¥ if and only if it is semi-simple and separable.

Complementary Bases. Two bases vy, ...,0,, and 0, ...,0, of A over f are said to be comple-
mentary if T'(w;0;) = J;;. These equations are equivalent to §; = X0; T'(0,0;) ; consequently they
are equivalent to (9.1), and to (9.2):

(9.1) For any fe A, £ =20, T(puw;).

(9.2) w; =20, T(w0;) (E=1,...,m).
These equations, in the form (9.2), imply that X7 '(w,0;) T(0,0,) = T(v,6,) = 04, whence
(9.3) D(w,, ...,0,).D(,,...,0,) =1.

Thus for the existence of complementary bases it is necessary that A have non-zero
discriminant over f. When that condition is fulfilled, the unique basis complementary to
Wy, ..., 0, is defined by (9.2). Assuming that these bases are in fact complementary, it is
seen from (9.1) that, in the regular representation determined by 4,,...,0,,, the matrix
representing £ has elements 7(fw;0;). It follows that T(f(w,0,+...+0,40,)) = T(f) for all
feA; and hence, using (9.1) again, '

(9.4) 0 0,+... 40,0, =e¢.

Differents. For any a € A, with characteristic polynomial f(x), the element ¢f”(a) is called
the different of «, denoted by d(«).

The next theorem can easily be proved by the use of conjugates, in the case when A is
a field; but the theorem belongs more properly to the theory of algebras.

THEOREM 17. Let « be any element of A, with characteristic polynomial f(x), and define elements
Nos -+s N1 Of I\ by the identity

¢f (%) = (ex—a) (Qo+mx+ ...+ x™71).
Then, for any fe A, fd(a) = eT(fno) +aT(fy) + ...+ 0" T(fn,,-1)-

Proof. Let the matrices representing £, , and #,_; in the regular representation be B, A,
and H,_|. Then (xl1—A) Zxi-1H,_| = f(x) 1, so Zxi~'H,_, is the adjoint matrix of (x|—A);
2oi~1H; | is the adjoint of («l—eA). Now use the elementary lemma:

If P and Q are m-square matrices with elements in any commutative ring, and Q, is the
adjoint of Q, the coeflicient of y in |yP+Q | is trace (PQ,).

Since | y(f1—eB)+ (al—eA) | vanishes identically,? it follows that the trace of

(f1—eB) Zoi—1H,_,
is zero; - trace (BXai~1H,_,) = trace (fZa~'H,_,).
The left-hand side is Zoi~17(fy,_,), and the right is the coefficient of y in |yfl+al—eA|,
i.e. in f(yf+a), which is gf"(«).

It follows from the preceding theorem that N(d(a)) = | T(ai"1p;_,) | = (—1)}=DD(q).
Thus when D(a) =0, d(a) is a unit of A, and T(y,_;a/~1/d(a)) = 8;; the basis complementary
to eya,...,a™ Y as pofd(a), ... q,_1/d(@).

T See Krull (19394), Theorem 1.
I The element yf +a of the extended algebra (y).A is a zero of its own characteristic polynomial.
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Primitive elements. An element ae A is said to be primitive for A over ¥ if ¢,a,...,am lisa
f-basis for A, i.e. if A = ef[a]. The non-vanishing of D(«) is a sufficient condition for « to be
primitive, but this condition is not necessary, nor need A possess any primitive element.
It must now be recalled that A, being a ring of finite Jordan-Hélder length, is uniquely
expressible as the direct sum of monotypic subrings A,, ..., A,. Each of the A, is an algebra
over f. Itis also convenient to make use of the extended algebra AY = {(y,, ...,7,,) . A, where
the y; are indeterminates.

THEOREM 18. Suppose that each of the monotypic components A, ..., A, of A possesses a primitive
element.

(1) If wy, ... 0, is a basis of A, the element y,w,+ ... +y,,0,, is primitive for A®,

(2) If ¥ has infinitely many elements, A itself possesses a primitive element.

The proof'is given in a condensed form, since Lemma 1 of Krull (19394) is a special case
of the theorem. The (monic) minimal polynomial ®(x) of y,w,+ ... +y,,0,, is a polynomial
in the y, say ®(x;y,,...,¥,,). Take non-nilpotent primitive elements a,, ..., «, for A,, ..., A,.
The (primary) minimal polynomials of y,«,, ..., y,&, are mutually prime, so the minimal
polynomial of y,«,+ ... +y,a, is their product, of degree m. Now

Oy a,+...+y,2,521,..52,) =0,
where the z are linear forms in the y over {, defined by the equation

zZioy+...+2,0, =Y+ ...} Y,
Hence the degree of @(x) is at least m.

In part (2) of the theorem, ¢;a;+...+c¢,a, is a primitive element of A, for non-special
€1y .-y C,€ L.

The preceding theorem directs attention to the question whether the monotypic com-
ponents A; of A possess primitive elements. This question is discussed below, after a pre-
liminary investigation in Theorem 19. For the rest of this section we assume that A is monotypic,
with maximal ideal q of exponent v.

TuEOREM 19. The following five propositions are equivalent:
(i) the only ideals of A are A, q,q?, ...,q" = (0);
(ii) there is no ideal of A strictly between q and G2;.
(iii) the ¥-modules q*~'/qt (t =1, ...,v) all have the same rank;
(iv) the ¥-module q/q? has rank not greater than that of AJg;
(v) q s a principal ideal of A. ,

Progf. If g and h> g are A-ideals such that the A-meodule §/g is simple, and 7 is an element
of h not in g, then §) = yA+-g. The annihilating ideal of /g is g (Grundy (1942), (11.4));
multiplication by 7 maps A/q on b/g; and this is a f-isomorphism, indeed a A-isomorphism.
Hence (iii) is true when (i) is true, and (iv) is false when (ii) is false. When (ii) is true, there
exists y e g such that q = yA+q?; for any t>1, qt = (yA+q2)t< yA+-q**1; and consequently
q=7yA+q" =7yA. When q=yA, any A-ideal gcA has a basis consisting of multiples
of y—g = 7g’, where g is a A-ideal. Thus (v) implies (i). The theorem is established by
the implications

(1) = (iii), (iv) =» (ii), (ii) = (v), (v)=> (i), and (iii) = (iv),
of which the last is obvious and the rest have been proved.
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(9.5) If A =¢f[a]+q? « is a primitive element for A (and conversely). In that case,
q = eg(«) . A, where g(x) is the minimal polynomial of « mod q over .

It is clear that ¢f[«] n q = €f[a] .y, where y = ¢g(a). By the modular axiom, the hypothesis
implies that q=qn A =¢f[a].y+q% Hence q'sef[a].y+q'*! for all £>1. By trivial
inductions, it is seen that A = ¢f[¢] +q’ and q = ¢f[a] .y +q’; but ¢* = (0).

THEOREM 20. If A has a primitive element, the propositions of Theorem 19 are true. If they are true,
and A|q is separable over ¥, then A possesses a primitive element.t

The first part of the theorem is included in (9.5). Under the conditions of the second part,
A certainly contains an element « which is primitive mod g, i.e. such that A = ¢f[a]+q.
No more need be said about the case v = 1. When v>1, it can be arranged further that
¢g(a)#£0 mod g2, where g(x) is the minimal polynomial of amod q over f. Indeed, if this
condition is not already satisfied by « it is satisfied by «-{, where { is an element of ¢ not in
q?; for then eg(a+{)=¢g(a)+{g'(2) =g’ (2)£0 mod g%. With such an «, if s denotes the
degree of g(x), the elements ¢g(a), ag(a), ...,a*~'g(a) are linearly independent mod g2 As
(iv) of Theorem 19 is postulated, it follows that q = ¢f[«].cg(a) +q2; hence

A = et[a] +q2%
and « is primitive by (9.5). ’

CoROLLARY. Suppose that an element o € A is primitive mod q, and let g(x) be its minimal poly-
nomial mod q. When the propositions of Theorem 19 are true, and v>1, a is primitive for A if and only

if eg(x) 0 mod g2.
10. COUNTER-EXAMPLES

F. K. Schmidt} has shown how to construct a pair of valuation rings § and & > &, which
satisfy the conditions imposed on R and S in Part I, except that the quotient field G of &
is inseparable over the quotient field F' of §. From the relevant properties of § and ®,
described below, it will be seen that the separability of L over K is not superfluous for
Theorems 10 and 13. Another counter-example, derived from that of Schmidst, is given in
the second half of this section. In this second example, R and S>R are valuation rings
satisfying the conditions imposed o1 R and & in Part I; but R and & are of rank 2, so that
the maximal ideal of R is not convergent. Hence it will be seen that the strong convergence
of p is not entirely superfluous for Theorems 10 and 13.

Let I' be any field of prime characteristic p, and

G = P(ﬁ,yl,zl, 22, -..), F: I‘(a,y‘ll), Zl’ 22, .-.),

where %, 7, and the Z; (:>>1) are algebraically independent over I'. It is clear that G = F(7,)
is inseparable of degree p over F; the pth power of any element of G belongsto . Further, put

H= F(ylagz’ )7

1 Cf. p. 274 of Pickert (1938). I am indebted to Mr P. Hall for drawing my attention to that paper.

1 Schmidt (1936), particularly p. 449, with the constants a; replaced by zero. (In this case there is no
need to postulate that I" has infinitely many elements.) The fact that the degree of Q over & is 1 was pointed
out in footnote 444 of Krull (19395).

See Krull (1932) for the relevant general valuation theory. On the valuation theory of algebraic extension-
fields, cf. Krull (1935), nn. 48, 40; Ostrowski (1934), n. 30 (finiteness of the ‘ Verzweigungsindex’). Reference
may also be made to Theorems 7 and 8 of Krull (1936).
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where 7,,7s, ... are defined by the equations
Wi =Y;+z; (1=1).

Evidently # is transcendental over H, and G = H(%). The ring ® is now defined to be that
valuation ring of G over H in which # has positive value. ® is a rank 1 discrete valuation
ring; consequently the same is true of § = Fn ®. The maximal ideals of  and § are re-
spectively Q = #® and P = a, so Q = PG. Because the pth power of every element of
® belongs to &, ® is integrally dependent on & (and hence ® is the only valuation ring of
G lying over ).

The degree of Q over § is 1; that is to say, every element of ® is congruent mod Q to an
element of §. In fact, any element of ® is obviously congruent mod Q to an element of H;
and hence the assertion follows without difficulty from the relations

zeq, Y=-% (b) (1=1).
Moreover, & does not possess a finite §-basis. Namely, the contrary would imply the
existence of a non-zero element ¢ of § such that

B =F- (1,71 )
but that is impossible, since 7, ,; belongs to %, and
Tt = T (2 F @y b oo FTIE) T, (r20),
Second Example. Let A be the field of rational numbers, and let
L= Au,y,,z,2,,...), K=Auytz,2,,...),

where 4, y;, and the z; (1>>1) are algebraically independent over A, and p is a prime number.
Clearly L is separable of degree p over K. Let B be that rank 1 discrete valuation ring of L
which consists of all elements expressible as

G(Us Y15 215 235 ---)

V(Y15 215 25, -..)°
where ¢, ¢ are polynomials with integer coefficients, and 0 mod p. In the homomorphism
from B to its residue field G, the ring of integers is mapped on the field I" of integers reduced
mod p. The images %,¥,,Z,,Z,, ... of u,¥,,2,2,,... in G are algebraically independent over
I, and G = I'(4,9,,Z,,Z,, ...). If A denotes the (rank 1 discrete) contracted valuation ring
B~ K, the residue field F of A is the subfield I'(%,%2,Z,,Z,,...) of G. Thus F and G may be
identified with the F and G of Schmidt’s example.

It is next proved that B is the only valuation ring of L lying over . For this, it is enough
to prove that if B’ is any such valuation ring of L (i.e. such that B’ n K = ), then B'=2B.
Now y, belongs to B’ because y# belongs to U, while u,z,, z,, ... belong to U itself. Taking
¢ and ¥ as in the definition of BB, it is seen that ¢(u, y,, z,, z,, ...) and ¥ (u, y;, 2,, Z,, ...) belong
to B’. Hence it remains to prove that ¢ (u,y,, z;, Z, ...) is a unit of B’. That follows from the
congruence ‘ ‘

V(91,21 29, ...)) 0 =Y (u?, 43, 24, 28, ...) mod p;
for the right-hand side is a unit of B’ (indeed, of ) ; and p is a non-unit of B, being a non-
unit of .
Let §, ® be the valuation rings of F, G, with maximal ideals P, Q respectively, considered
in Schmidt’s example. & is defined to be the set of elements of B whose images in G belong
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to ®—G& is a discrete valuation ring of rank 2. The contracted valuation ring R = S K
is also discrete, of rank 2; in fact, R is the set of elements of W whose images in F belong to .

Any valuation ring &’ of L lying over R has rank 2, and is therefore contained in a rank 1
valuation ring B’ of L; the image of &’ in the residue field of B’ is a valuation ring &/,
and &’ consists of all elements of B’ whose images in the residue field belong to ®’. The
valuation ring B’ K can be none other than . By the preceding remarks, B’ = B.
It follows that ®’ is a valuation ring of G lying over &, whence ®' = ®. Thus &' = S; S
is the only valuation ring of L lying over R; and consequently S is integrally dependent

on R.
The image in G of the maximal ideal q of S is the maximal ideal Q of ®. Since Q = u®,

it follows that q = u&; similarly, the maximal ideal of R is p = uR. Hence q = pS.

The image in G of a mod q remainder-class in & is a mod Q remainder-class in ®. Since
the latter remainder-class is known to contain an element of §, the former must contain an
element of R. This shows that the degree of q over R is 1.

Next, note that S does not possess a finite R-basis; for it is clear that the existence of such
a basis would imply the existence of a finite §-basis for 6.

In conclusion, it is easy to deduce that

D(eys .- 2,)=0 (p), d(x)=0 (q),
foranya,, ...,, € S. Infact, thecontrary hypotheses would imply that S had a finite R-basis,
S=R.(a,...,a,) or S=Ra]

respectively.
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